
Simple Path Planning Algorithm for Two-Wheeled
Differentially Driven (2WDD) Soccer Robots

Gregor Novak1 and Martin Seyr2

1Vienna University of Technology, Vienna, Austria
novak@bluetechnix.at

2Institute for Machine and Process Automation,
Vienna University of Technology, Vienna, Austria

seyr@impa.tuwien.ac.at

Abstract — Well designed path planning algorithms are the key factor for mov-
ing robots. This paper describes a novel simple approach based on kinematics. The
testing bed is a tiny two-wheeled robot. The robot’s movement is specified by its
translatoric velocityvR and its angular velocityωR. The kinematic approach gener-
ates piecewise circular arcs based on a number of possible different sets of boundary
conditions in the target positions.

1 Introduction

In 1994 robot soccer was introduced with the theoretical background to develop multi-
robot adaptive, co-operative, autonomous systems solving common tasks. A group of
robots shall interact and self-organise autonomously in order to achieve a common goal.
Further technical aspects besides co-operative and co-ordinated behaviour are miniatur-
isation of a complex electro-mechanical system, precise movement and optimal power
efficiency. There are several categories in robot soccer: NaroSot, MiroSot, KheperaSot
and HuroSot, classified by the size of the robots and the number of playing robots. In the
category MiroSot the robot’s size is limited to a 0.075m cube (http://www.fira.net).

Generally speaking, such a robot system has a global goal - to win a soccer game. In or-
der to reach this goal tasks and subtasks are generated based on the actual game situation.
The solution of a task or a subtask leads to a trajectory to be traced. Path planning itself
is a difficult topic and a lot of highly sophisticated approaches for solving it have been
published [1, 2, 3, 4, 5]. In this paper however, a simple approach based on kinematics
is presented. The problem of path planning can be simplified by calculating intersection
points to be reached subsequently. The presented approach has the advantage of a simple
straight forward implementation, which enables a coordinated movement with compar-
atively small programming effort. Moreover, the algorithms require little computational
performance. So this concept is ideal for hardware testing purposes.

GREGOR NOVAK, MARTIN SEYR

The paper gives a short overview of the used testing bed, the robot’s kinematics and the
used algorithm for generating trajectories.

2 Tinyphoon - Testing Bed

As a testing bed a mobile mini robot is used, fig.1. This mini robot is two-wheeled and
differentially driven (2WDD). It is characterized by a simple, compact and modular ar-
chitecture. It has two DC motors controlled by pulse width modulated (PWM) voltage
signals and reaches a speed of up to 2.5m/s. The whole robot with all its components
fits into a cube with an edge length of 0.075m. The task of the robot’s motoric unit is to
optimally follow a desired trajectory.

Figure 1: Tinyphoon

The mechanical unit of the mobile platform consists of the following parts:

• two wheels with rubber tyres

• two one stage transmissions

• two DC motors with magnetic two channel encoders

• Chassis with battery mounting

• Superstructure for the electronics unit

Beside the mechanical part the robot’s motion unit consists of two electronic boards.
One board contains the power electronics and sensors, the other one contains a micro
controller XC167 by Infineon, a flash EPROM, a serial connection interface for program-
ming, and a CAN bus interface. The CAN bus interface enables the communication
between several micro controller boards for different tasks.

PATH PLANNING

The modular and open architecture enables an easy implementation of additional sen-
sors, for example for an onboard robot vision system.

The micro controller has six PWM outputs, three inputs for digital encoders, AD (ana-
log digital) and DA (digital analog) converters and a number of free input and output pins,
which generate interrupts either on rising or falling edges. Furthermore, it features CAN
bus interfaces as well as asynchronal and synchronal serial interfaces. The primary task of
the micro controller is to control the movement of the robot. Therefore four PWM output
signals, two direction signals, and four pins for the two encoders are required. The micro
controller is clocked with 40MHz.

Additionally, this board contains a Bluetooth radio module for communication with a
host computer and other robots. This communication module can also be used for online
configuration and debugging.

As already mentionaed the DC motors are controlled by PWM signals generated by the
micro controller. Due to the fact that the motors need much more power (i.e. higher cur-
rent) than the micro controller is able to provide, a driver is required. A dual full bridge
driver is installed. The DC motors are controlled by feedback signals of two-channel dig-
ital encoders, which are mounted directly on the DC motors. It is planned to implement
additional sensors on the power electronics-/sensor-board. These will be two two-axis
acceleration sensors, a gyro sensor and a magnetic field sensor.

The algorithm itself is implemented on an additional DSP board. This board contains
a Blackfin BF533 processor by Analog Devices and is linked via SPI bus to the XC167
board.

3 Kinematics

As reference values for the robot’s movement the velocityvR and the angular velocityωR

are chosen (fig. 2). To convert these values to the velocities of the left wheelvR,L and the
right wheelvR,R, equations 1 and 2 are used.

All the necessary relations can be obtained from the kinematic model(vR,L, vR,R) =
f(vR, ωR),

vR,L = vR − B · ωR

2
, vR,R = vR +

B · ωR

2
; (1)

solved forvR andωR

vR =
vR,L + vR,R

2
, ωR =

vR,R − vR,L

B
. (2)

GREGOR NOVAK, MARTIN SEYR

ϕ

RRv ,

Rv

LRv ,

mJ ,
c

2
B

Rω

Rx′
Ry′

Figure 2: Kinematics and local coordinate system

The curvatureρ of the trajectory is obtained from the holonomic relation between the
velocityvR and the angular velocityωR,

ρ =
vR

ωR

. (3)

The position of a robot moving along a trajectory is calculated with the following mech-
anism. The position of the robot at time 0 isP0 = [x0 , y0 , ϕ0]

T . The robot moves
with the velocityvR and angular velocityωR. The next positionP is a functionP =
f(P0 , vR, ωR, ∆t). The trajectory between the initial position and the next position at
t + ∆t is a circular arc with the radiusρ.

In order to simplify the calculation a robot fixed coordinate system is introduced. The
new origin is located in the center of the robot and the new x-axis (x′-axis) is the tangent to
the current trajectory. Therefore the new coordinate system is shifted byx0 in x-direction
and byy0 in y-direction. Furthermore, the new coordinate system has to be rotated byϕ0

(fig. 3).

Coordinate transformation:

x′ = x cos ϕ0 + y sin ϕ0 − x0 cos ϕ0 − y0 sin ϕ0, (4)

y′ = −x sin ϕ0 + y cos ϕ0 + x0 sin ϕ0 − y0 cos ϕ0. (5)

PATH PLANNING

y

x

()PP yxP ,

x′
y′

()000 , yxP

0ϕ

()0,0 0x

0y

Figure 3: Coordinate Systems

Inverse transformation:

x = x′ cos ϕ0 − y′ sin ϕ0 + x0 (6)

y = x′ sin ϕ0 + y′ cos ϕ0 + y0. (7)

In the fig. 4 the initial positionP0 is located in the origin of the transformed coordinate
system.

()PP yxP ′′ ,

x′

y′

0P

ICR
ρ

tR∆ω

Figure 4: Circular arc around the instantaneous center of rotation

The new position after a time interval∆t is

x′ = ρ sin(ωR∆t), (8)

y′ = ρ(1− cos(ωR∆t)). (9)

GREGOR NOVAK, MARTIN SEYR

Applying the inverse coordinate transformation gives

x =
vR

ωR

(sin(ωR∆t) cos ϕ0 − (1− cos(ωR∆t) sin ϕ0)) + x0, (10)

y =
vR

ωR

(sin(ωR∆t) sin ϕ0 + (1− cos(ωR∆t) cos ϕ0)) + y0 (11)

and

ϕ = ωR∆t + ϕ0. (12)

ForωR → 0 the new position is calculated from (8) and (9) using l’Hospital’s rule

x′ = vR∆t (13)

y′ = 0. (14)

Applying the inverse coordinate transformation yields

x = vR∆t cos ϕ0 + x0, (15)

y = vR∆t sin ϕ0 + y0 (16)

and

ϕ = ϕ0. (17)

4 Path planning

4.1 Introduction

The control algorithm of the robot is based on a multi layer model. The bottom layer con-
trols the mechanics in order to follow the robot’s desired trajectory. The next higher layer
calculates the trajectory, which is generally known as path planning. The calculation of
a trajectory is based on intersection points, which are the result of solving the generated
tasks. Solving the tasks is done by the next layer, which is itself a sub layer of the decision
layer, [6].

The basic ability of such a robot is to reach target positions. There are various possibili-
ties how a target positionP can be described. It can be defined by arbitrary combinations
of the following parameters:

PATH PLANNING

• x- andy-coordinate, a position in the plane

• ϕ, the orientation in the target position

• vR, the velocity in the target position

• T , time interval to reach the target position

4.2 Algorithms

Depending on whether the target orientation is specified or not, in this paper two different
algorithms are presented. The first one calculates a path through a target position without
a given orientation. Whether the target velocity and the time interval are specified or not
does not affect the trajectory in this simple approach. The second algorithm first calculates
a suitable intersection point to be reached using the first algorithm, and then calculates a
circular arc through the target position. The target position can then be reached with the
desired orientation. So the trajectory is calculated out of the target parameters and the
present position, it consists of straight lines and circular arcs; the velocities and angular
velocities are piecewise constant.

The robot does not have a distinguished front- or backside, both directions are equiva-
lent. If the robot moves backwards the angleϕ in the above derivations has to be changed
to

ϕ̃ = ϕ− π, (18)

and the reference velocityvR is multiplied by−1

ṽR = −vR. (19)

The angular velocityωR remains unchanged.

4.3 Target position without specified target orientation

With this algorithm a target position for arbitrary target orientations is calculated from
the parametersxR, yR andϕR (the robot’s present position) andxT andyR (the target
position), see fig. 5.

The orientationϕR has to be adjusted to face the target position first,

∆ϕ = ϕT − ϕR. (20)

The angular velocityωR is calculated by

ωR =
KP

∆T
∆ϕ, (21)

where∆T denotes the sampling time andKP the gain of a P-controller.

GREGOR NOVAK, MARTIN SEYR

ϕ∆

Rϕ
robot

target

d
Tϕ

y

Ty

Ry

Rx Tx x

Figure 5: Target position without specified target orientation

The velocityvR is increased with a constant maximum acceleration. If∆ϕ is larger
than a certain margin (to be determined experimentally), the translational acceleration
starts after pivoting the robot on the spot. Otherwise there would be a significant devia-
tion.

4.4 Target position including a specified orientation

In order to reach a target position with a specified orientation in this paper a trajectory
consisting of a straight line (chapter 4.3) and a circular arc with a fixed radius is calculated,
fig. 6. The radius depends on the robot’s dimensions, its velocity and the goal object’s
dimensions (e.g. the ball).

x

y
yy ′′′,

x ′′

m

�

�

�

x′

a

�

r

s

Figure 6: Trajectory for a target position with specified target orientation

PATH PLANNING

For the calculation of the intersection pointS the coordinate transformation equ. (4) and
(5) is used. The coordinate system is rotated so that the new x-axis points into the direction
of the target orientation, and its origin is shifted to the circle’s centerM . The intersection
point S is the position where a straight line through the robot’s present positionR is a
tangent to the circle. In equation (22)′′ denotes the representation of a vector in terms of
the ′′-coordinate system, fig. 6.

a′′ = [ax′′ , ay′′]
T , s′′ = [sx′′ , sy′′]

T . (22)

The vector from the intersection pointS to the present positionR reads

m′′ = a′′ − s′′ = [ax′′ − sx′′ , ay′′ − sy′′]
T ; (23)

its absolute value

|m′′| =
√

(ax′′ − sx′′)2 + (ay′′ − sy′′)2 (24)

andPythagoras’theorem

|m′′| =
√
|a′′|2 − |s′′|2 (25)

yield

(ax′′ − sx′′)
2 + (ay′′ − sy′′)

2 = a2
x′′ + a2

y′′ − s2
x′′ − s2

y′′ . (26)

Outmultiplying, replacings2
x′′ − s2

y′′ with r2, reordering and dividing by 2 gives

sx′′ax′′ + sy′′ay′′ = r2. (27)

Inserting equation 25 into 27 leads to a quadratic equation forsy′′

r2
(
r2 − a2

x′′
)− 2ay′′r

2sy′′ +
(
a2

x′′ + a2
y′′

)
s2

y′′ = 0 (28)

As can easily be seen from fig. 6 only the larger of the two real solutions is relevant.
If there is a double solution, the present position of the robot is already on the circle, if
there is a conjugate complex solution, the present position lies inside the circle, and the
calculation has to be redone with a suitable smaller radius.

sy′′ =
ay′′r

2 +
√

a4
x′′r

2 + a2
x′′a

2
y′′r

2 − a2
x′′r

4

a2
x′′ + a2

y′′
. (29)

For the x-coordinate of the intersection pointS follows

sx′′ =
r2

ax′′
− sy′′ay′′

ax′′
. (30)

Remark I There are two possibilities to set a circle whose tangent is the target orienta-
tion. Of course the possibility nearer to the robot’s present position has to be chosen.

GREGOR NOVAK, MARTIN SEYR

Remark II The calculated coordinates can easily be transformed back into the original
inertial or the robot-fixed coordinate system.

To follow a circular arc the robot’s velocityvR and angular velocityωR have to keep
a constant relation. Furthermore the velocity is assumed to be kept constant, therefore
the angular velocity has to be constant, too. That means that only the difference angle
between the present orientation and the target orientation has to be calculated, fig. 7.

Tϕ
1ϕ

ϕ∆

Rϕ 1ϕ

�����

�� �� � �

�

�

�

x ′

y′

2ϕ

2ϕ Mϕ

Sϕ

Figure 7: Angles in the circular arc

ϕR actual direction
ϕT target orientation
ϕM angle of the vector pointing to the center of the circle
ϕS tangent orientation in the starting point
ϕ1 angle of the secant
ϕ2 angle between secant and radius
∆ϕ angle between actual direction and the

tangent to the circle at the starting point

ϕ1 = arctan

(
yT − yR

xT − xR

)
, (31)

ϕM = arctan

(
yM − yR

xM − xR

)
, (32)

ϕ2 = ϕ1 − ϕM, (33)

PATH PLANNING

and

ϕS =
π

2
+ ϕM. (34)

The angleϕcurve is the angle by which the robot has to be rotated to reach the desired
orientation.

ϕcurve = 2(
π

2
− ϕ2). (35)

If there is a deviation from the tangential direction due to a possible disturbance the
robot has to rotate by∆ϕ first,

∆ϕ = ϕS − ϕR. (36)

After a time interval∆t = ϕcurve

ωR
, assuming constantvR andωR, the target is reached

with the desired orientation.

5 Conclusions and further work

The described algorithm is very simple to implement and leads to feasible results, [7].
Nevertheless, a more sophisticated algorithm, which is based on an optimization algo-
rithm using the calculus of variations, is currently being developed. The idea is to mini-
mize a performance criterion based on the robot’s initial position and orientation plus its
target position and orientation. Furthermore, the robot’s dynamic properties (e.g. nonlin-
ear dynamic response of the power electronics or wheel slip) will be accounted for.
In future, stationary and even moving obstacles will be included in the calculation of the
trajectory, as well as different combinations of target parameters.

References
[1] J.-M. Yang and J.-H. Kim. Sliding mode control for trajectory tracking of nonholonomic wheeled

mobile robots.IEEE Transactions on Robots and Automation, (3), June 1999.

[2] A.M. Hussein and A. Elnagar. On optimal constrained trajectory planning in the plane.International
Journal of Robotics and Automation, 14:33–38, 1997.

[3] J.V. Miro and A.S: White. Quasi-optimal trajectory planning and control of aCRS A251industrial
robot. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control
Engineering, 216:343–356, 2002.

[4] J. Reuter. Mobile robots trajectories with continuously differentiable curvature: an optimal control
approach.Proceedings of the International Conference on Intelligent Robots and Systems, 1:38–43,
1998.

[5] A. Elnagar and A. Basu. Smooth and acceleration minimizing trajectories for mobile robots.Pro-
ceedings of the 1993 IEEE International Conference on Intelligent Robots and Systems, 3:2215–2221,
1993.

[6] G. Novak. Robot soccer: An example for autonomous mobile cooperating robots. InProceedings of
the First Workshop on Intelligent Solutions in Embedded Systems, pages 107–118, Vienna, Austria,
June 2003.

GREGOR NOVAK, MARTIN SEYR

[7] G. Novak.Multi Agent Systems - Robot Soccer. PhD thesis, Vienna University of Technology, Vienna,
Austria, 2002.

[8] G. Dudek and M. Jenkin.Computational Principles of Mobile Robotics. Number 0-521-56876-5.
Cambridge University Press, Cambridge, UK, 2000.

