
DECISION MAKING FOR MIROSOT SOCCER PLAYING ROBOTS

Uwe Egly1, Gregor Novak2, Daniel Weber1

1Institute of Information Systems,
Vienna University of Technology, Vienna, Austria

uwe@kr.tuwien.ac.at
daniel.weber@clara.tuwien.ac.at

2Institute of Computer Technology,
Vienna University of Technology, Vienna, Austria

novak@ict.tuwien.ac.at

Abstract A key property of autonomous systems like mo-
bile robots is their ability to make decisions by their own
without a master or supervisor. In this paper, we describe a
rule-based fuzzy decision making mechanism for a system,
very similar to the MiroSOT robots. Unlike these MiroSOT
robots, which are usually controlled by a master computer,
the proposed decision making mechanism is integrated into
an extended version of a MiroSOT robot. This allows the
robot to make decisions and to act autonomously.
In many cases, the decisions are based on local sensor
data of the robot instead of global data obtained, e.g.,
from a global (camera) picture of the scene via the master
computer.

Keywords: Robot Soccer, Reasoning, Fuzzy, Decision
Making

1. Introduction

A key property of autonomous systems like mobile robots is
their ability to make decisions by their own without a master
or supervisor. In this paper1, we propose a decision mak-
ing mechanism for autonomous robots based on fuzzy rules.
Since our work is based on an extension of a MiroSOT2

robot, we first describe in Fig. 1 the vision-based FIRA3 en-
vironment [1] based on a master computer system.
In this environment, two robot teams play soccer against
each other. The size of the robots is limited to a cube with
an edge length of 75mm. A master computer control all
the robots of a team. Above the playground, each team
is allowed to mount a camera, which transmits pictures to
the master computer. In order to simplify the position and
movement detection of entities on the playground, there are
some constraints:

� The playground is black.

� The (golf) ball is orange.

� Each robot is marked on its top with at least one color.

In the master computer, a vision system detects the posi-
tion, the orientation and the movement of object on the play-

1This paper was written within the Center of Excellence for Au-
tonomous Systems of the Vienna University of Technology (CEAS).

2Micro Robot Soccer Tournament
3http://www.fira.net/games/mirosot.html

Fig. 1: Overview of the vision-based FIRA system.

ground. This global information is the basis for decision
making which is performed by the master. A possible result
of the decision making process is a desired movement each
robot of the team should perform. With a radio communi-
cation, these desired movement is sent (as a trajectory) to
each of the robots. They execute the orders and follow the
trajectory.
Although we describe our concepts in the context of robot
soccer, it is not our intention to build up a typical MiroSOT
system with an external and centralized decision making
unit. The idea is to develop a universal applicable rea-
soning engine for several autonomous robot systems, like
Tinyphoon4 or Nano [2].

2. Problem Analysis and Related Work

Playing robot soccer is a demanding application. The robots
have to act extremely fast and the whole reasoning and de-
cision making process must be finished after a few millisec-
onds (in other words, the system must meet real-time re-
quirements). The demanding time constraints are one rea-
son for the centralized robot team organization with a master
computer.
Besides these timing problems, decision making in such sys-
tems is often based on more or less inaccurate and noisy
sensor data. Such unreliable data are a problem in the ap-
proach with a master, but the problems are even bigger for
autonomous systems. The reason for the increasing difficul-
ties in the latter systems is the replacement of the “global
view” by a “local view” with probably less information.
The robots’ global goals and behaviors have to be described
in a way which allows for flexible changes and updates.

4Official homepage of Tinyphoon http://www.tinyphoon.com



Fig. 2: The three layered architecture for decision making.

Moreover, the rules of the game also have to be described.
The physical constraints together with the rules restrict the
allowed or possible behavior of the robot.
Another main problem is the definition of the behavior for
soccer playing including opponent modeling and tactics.
MiroSOT systems usually use inflexible hard coded if-then
rule sets which prevent easy updates or changes. The usage
of vision based systems for position detection arises prob-
lems of noisy data which makes usual systems ineffective
but hybrid control solutions exist [3] for the robot soccer
domain. In a hybrid or fully autonomous control structure,
the planning activities of a single robot has to be coordinated
within the team [4].
In the literature, there exist several approaches for decision
making, often combined with path planning. A famous rep-
resentative of this approach is the Evolutionary Artificial Po-
tential Field (EAPF) method. A few suggestions for the
MiroSOT domain exist [5]. Basically, this is just a solution
for path planing amongst moving obstacles. Decision mak-
ing can be done by specifying some special potential field
functions. Some implementations use genetic algorithms to
optimize parameters [6] for these functions in advance.

3. Decision Making

The responsibility of the decision making is to select actions
in order to achieve the global team goal which is divided
into subgoals for each robot. The global goal is, e.g., to
win a soccer game. Decision making generates single tasks
which are computed by considering a set of rules (specify-
ing, e.g., the behavior) as well as world information. This
world information is obtained by fusion of the information
delivered by several sensors. The rules are set at the start up
phase of the robot. Tasks consist of simple subtasks, small
enough to be solved easily by the robot. In case of soccer
robots, an example for a simple subtask is “go behind ball”,
i.e., the robot is nearby the ball and the ball is between the
robot and the opponent’s goal. Such a subtask can be solved
by moving the robot to a target position which satisfies the
requirements.
On the basis of this scenario, the robot decision making unit
determines the appropriate behavior to reach the target po-
sition. The algorithm uses a fuzzy logic based method com-
bined with a state machine system to determine the best ac-
tion out of a given set of actions. In a team related problem-
solving strategy, some measures have to be taken into ac-
count in order to avoid two robots taking the same course of
action. In non-autonomous systems with a central control,
such problems do not occur.
Main design principles of the decision making system were
to keep it simple and to allow its use in fully autonomous co-

Fig. 3: The ShootAtGoal action in an XML representation.

operating mobile robots. The system consists of three layers
depicted in Fig. 2. The top layer Strategy decides the main
behavior or strategy (offensive, defensive) for the team, in
order to reach the global goal. Role assignment is done in
the Task Distribution layer. Based on the chosen strategy,
fuzzy values and estimation on teammates’ behavior, a role
is assigned to each member (avoiding concurrent role as-
signments, e.g., there is only one goalkeeper). The final
layer, the basic Action layer, depends on the robot’s role.
Classic actions established in robot soccer are used in this
implementation. To ensure the generality of these actions,
they can be further divided into base-actions (representing
the simple moves above a single goto-Position command).
A mechanism to avoid the toggling of decisions because of
noisy senor data is provided by using fuzzy-based evalua-
tions on every layer. The system works like a state machine,
where the last selected state influences the next state selec-
tion as long as it is valid. If, for some cycles, this state has
not been re-approved, the next computed state is entered.
The state transition is also based on fuzzy logic. Every item
on every layer of the hierarchical decision making approach
can be seen as states of the machine.
In common multi robot systems, the adaptation of the be-
havior of the robots is very complex, if the working envi-
ronment or the goal changes significantly. If the behavior
is hard-coded, e.g., as if-then rules, then changes are cum-
bersome. We propose a more flexible approach based on a
“description language” based on XML, where environmen-
tal and behavior information can be described in colloquial
terms. The environment of a robot can contain dimensions
of rooms and obstacles and many more parameters. Behav-
ioral information specifies the actions of the robot in a spe-
cific situation. The ShootAtGoal action, specified in XML
form, is used as an example in Fig. 3
In this ShootAtGoal action, there are three different weight
fields, namely one for a forward player, one for a defender,
and one for a goal keeper. The rule consists of six conjunc-
tively connected preconditions; five are positive and one is
negative. The action can be performed if the conjunction of
the preconditions is satisfied.
Such rules are combined within the hierarchical approach
of decision making described above. Whenever rules are
evaluated, they influence the rules of the next lower level by
changing their weight.



Fig. 4: Rules Logictree

The lowest levels comply with the basic actions, a robot can
execute. On every level, it is possible to specify detailed
information for determining values of parameters required
for this level (e.g., if, in some level, it is required to select a
target position, rules for choosing the appropriate positions
are provided within this level). As we have already seen in
the example rule above, it is possible to build up rules with
logical operators (and, or, not) at any desired level of com-
plexity. The values referenced in the precondition of the rule
are given or calculated from sensor data. However, not the
absolute values are used, but the values are “categorized” or
“fuzzified”. For instance, the attribute DistanceToBall is a
distance which can be very near, near, middle, far and very
far. The mapping of, e.g., the value of a range sensor to
these categories is application dependent and can be speci-
fied in a separate XML file. Moreover, there is an additional
XML schema file which contains all the attributes with their
names and allowed categories. Such a schema file allows for
consistency checks.
Rule evaluation on every layer is done by traversing logic
trees (see Fig. 4 for a tree representing the rule in Fig. 3).
Such a tree is a representation of the logical expression
which forms the precondition of the rule. The logic trees
are build when the corresponding XML files are parsed at
system start up. The items in the precondition are connected
by the logical connectives and, or and not.
At the beginning of every cycle, the current sensor and envi-
ronment variables are fuzzified. In order to avoid the time-
consuming complete evaluation of all rules every time in
every layer, special ”activation rules” are used to focus on
relevant information. For instance, if the current strategy is
defense, then all rules handling other strategies are ignored
in the current cycle.

4. Simulation Software

In order to test the functionality and the quality of the deci-
sion making component, a simulation application has been
implemented. A game situation with three robots per team
is depicted in Fig. 5. The main goal of the simulation soft-
ware is to allow for testing the decisin making module in-
dependently from the real hardware platform. The simu-
lator is written in C# and imports the robots reasoning li-
brary (which itself is written in C++). A simple physical
model of rigid bodies with collision detection and collision
response is included. Properties of every simulation entity

Fig. 5: A snapshot from the simulation program.

can be defined to adapt the physical behavior to represent
the reality (mass, velocities, dimensions etc.). In order to
make changes of the behavior and the environment easy, all
the parameters are represented in XML.
The application focuses on simulating the temporal behav-
ior of the robots control cycle. Therefore, the simulator’s
control loop manages two time scales; one time scale for the
physical model and one time scale for the graphical display.
The result of the simulation is independent from the com-
puter system time as well as from the system performance.
On fast computer systems, the simulation runs in real time,
wehereas on less powerful systems, a slowddown is possi-
ble. For instance, if we want to simulate ten seconds of the
game, a fast computer performs the whole simulation just in
time, whereas the slower system might use 20 seconds. Al-
though the elapsed time may differ for different computers,
the number of iterations of the control loop is the same on
every system.
In the current version of the simulation environment, oppo-
nents cannot be simulated yet. It is possible, however, to
define actions of the opponent robost (like a path which a
specific opponent robot has to follow) in order to check the
reaction of the own robots. These reactions are calculated
by the decision making module.
In the robot soccer domain, the sensor data mostly consists
of positions computed with an image recognition module.
Therefore, the position data is often noisy. In order to enable
more realistic results, the simulation environment contains a
mechanism to attach noise to object positions. The complete
simulation session can be saved including all positions, time
stamps and robot properties. A main reason for implement-
ing this application was the need to test the decision making
and to analyze the reason why a specific decision has been
taken in a given situation.
The interface of the simulation allows the control of the
robot positions and messages from other programs (e.g., a
MiroSOT-based vision system). Further improvements will
allow communication between the robots belonging to the
team, the management of multiple XML decision files and
the attachment of a reasoning library to the opponent robots.



Fig. 6: Tinyphoon in action.

5. Further Research

The reasoning engine is designed to be implemented on the
Tinyphoon robot. Tinyphoon2003 (depicted in Fig. 6) is
the further development of Roby-Go [8], which was first
released in spring 2000. Contrary to Tinyphoon, Roby-Go
was developed basically as a pure soccer playing robot for
the category MiroSOT. Tinyphoon represents a completely
autonomous robot with integrated digital camera. Since it
is derived from Roby-Go, it is still a two-wheeled differ-
entially driven robot with the dimensions of a cube with
an edge length of 75mm. The first version of Tinyphoon
was finished and introduced in September 2003. It consists
of a motion unit containing the motor driver, a micro con-
troller, digital encoders for the measurement of the wheels’
speed, acceleration sensors and a yaw rate sensor. Further-
more, it consists of a mono vision system unit [9] equipped
with a CMOS camera and a DSP (Digital Signal Proces-
sor). Both units are connected via CAN (Controller Area
Network) bus.
Integrating the proposed reasoning engine requires updating
of the Tinyphoon, because of lack of computing resources
in the current version. The next version of Tinyphoon will
get, beside a pivoted stereo visioning unit [10], a reasoning
unit equipped with a 32bit processor.
Besides the improvement of the hardware, it is also planned
to improve the handling of sensor data. Since these data are
noisy, it is required that the sensor submits, besides the ac-
tual acquired measurement value, a quality factor for this
value. It is most common that sensors measure more accu-
rate in some ranges, and less accurate in some others. The
quality factor should be available for the sensor and has to
be transmitted with the measurement value. The handling of
quality factors in rule systems and their propagation during
rule applications has to be improved. A possible method in
the literature is based on certainty factors, which are used to
handle inaccurate information in knowledge-based systems.

6. References

[1] G. Novak. Multi Agent Systems - Robot Soccer. Doc-
toral dissertation, Vienna University of Technology,
Vienna, Austria, 2002.

[2] H. Tappeiner. Nano - Entwicklung eines kleinen sechs-
beinigen Roboters nach biologischem Vorbild. Mas-

ter’s thesis, Vienna University of Technology, Austria,
March 2004.

[3] H.-S. Shim, M.-J. Jung, H.-S. Kim, J.-H. Kim and
P. Vadakkepat. A hybrid control structure for vision
based soccer robot system. In Int. J. Intelligent Au-
tomation and Soft Computing, 6, pages 89–101, 2000.

[4] R. Alami, F. Ingrand and S. Qutub. A scheme for coor-
dinating multi-robot planning activities and plans exe-
cution. In 13th European Conference on Artificial In-
telligence, pages 617–621, 1998.

[5] P. Vadakkepat, T. H. Lee and L. Xin. Application of
evolutionary artificial potential field in robot soccer
system. In Joint 9th IFSA World Congress and 20th
NAFIS International Conference, pages 2781–2785,
2001.

[6] P. Vadakkepat, K. C. Tan and W. Ming-Liang. Evo-
lutionary artificial potential fields and their application
in real time robot path planning.

[7] L. A. Zadeh. Fuzzy sets. In Inform. and Contr. vol. 8,
1965.

[8] G. Novak. Roby-go, a prototype for several mirosot
soccer playing robots. In IEEE International Confer-
ence on Computational Cybernetics (ICCC04), pages
207–212, Vienna, Austria, August 29 - September 1
2004.

[9] S. Mahlknecht, R. Oberhammer and G. Novak. A real-
time image recognition system for tiny autonomous
mobile robots. In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS04),
pages 324–330, Toronto, Canada, May 25-28 2004.
IEEE Computer Society.

[10] G. Novak, A. Bais and S. Mahlknecht. Simple stereo
vision system for real-time object recognition for an
autonomous mobile robot. In IEEE International
Conference on Computational Cybernetics (ICCC04),
pages 213–216, Vienna, Austria, August 29 - Septem-
ber 1 2004.


